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Abstract 
A key practical  obstacle  in  applying  support vector machines to many large-scale data mining 
tasks is that SVM’s generally scale quadratically  (or worse) in the number of examples  or support 
vectors. This complexity is further compounded when a specific SVM training is but  one of 
many,  such as in Leave-One-Out-Cross-Validation (LOOCV) for determining  optimal SVM kernel 
parameters  or  as in wrapper-based  feature selection. In  this  paper we explore new techniques 
for reducing the amortized cost of each such SVM training, by seeding successive SVM trainings 
with the results of previous  similar  trainings. 

1 Introduction 
Recent  progress on speeding up  the  training  time for support vector machines (e.g. [8],[5]) has  made SVM’s 
practical now for training  sets  that  are fairly large. However, the time complexities of those  approaches  are 
still  typically quadratic  in  the number of examples ( N )  in the  training  data  set.  This is especially problematic 
in a data mining  context,  due  both to commonality of enormous data set sizes and  to  the frequent need for 
high-quality  model selection over many  candidate SVM’s. 

Given that  the complexity of the best  methods for training  a single SVM tend  to  be  quadratic in N ,  we 
seek methods which could reuse the results from training some SVM when training similar SVM’s, in the 
hopes of amortizing that cost.  In the best case, this might  lead to amortized SVM training  costs which are 
linear  in N .  For example, Leave-One-Out-Cross-Validation (LOOCV)  estimates of generalization  error for a 
data set of N examples involve N trainings, each involving N - 1 training examples. If each SVM for each 
of the size N - 1 data sets could be intelligently initialized from the result of the SVM trained  on all N 
examples, only a small  amount of additional work might  be  required for each. The overall cost  might well 
remain  quadratic  in N (Le. dominated by the cost of the SVM trained  on  the full data  set) - and  thus 
effectively have cost linear in N for each of the N SVM’s trained for the different size N - 1 data sets. 

An underlying  motivation of our work is to  try  to bring SVM’s substantially closer to  the fast linear 
complexity of LOOCV using k nearest-neighbors, (a factor in k-NN’s popularity  in  practice), while retaining 
the advantages of SVM’s (e.g.  maximum  margins). 

After reviewing the basic aspects of SVM classification, we will present a variety  “alpha  seeding”  methods 
for reducing SVM training  time. We  will then present some empirical  results which illustrate the potential 
promise of such alpha seeding and help us begin to  understand the tradeoffs involved. Although we have not 
yet achieved linear  amortized  costs,  our  results appear promising towards that effort, as well as of practical 
use in  their own right. 

’For Euclidian distance, complexity  logarithmic  in N is  often  achieved  for  k-NN’s,  using  indexing  schemes  such as k-d  trees. 
However,  for the general distance  metrics employed  within SVM kernel methods [9, 31 sub-linear  performance for k-NN’s  is  not 
as obviously  achieved. 
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2 Support Vector  Machines 
Support vector machines [lo, 111 represent  a relatively new and promising approach to machine  learning. 
Recent work has established SVM’s as providing state-of-the-art  performance  on classification and regression 
tasks  across a variety of real-world applications (e.g. see [lo] and [4]). 

In  this  paper, we focus on SVM’s for binary classification [l]. In  binary classification, each  label is valued 
either “+l” or “-l”, indicating  either a positive or negative  example, respectively. 

Let X A  be  an nA by D matrix representing the training  set  and X g  be  an n B  by D matrix representing 
the  test  set, where D is the dimensionality of the  input space (i.e. D features)  and n A  and ng are  the number 
of training  and  test examples, respectively. Let LA be a vector of the 1 2 ~  known labels for the  training  set 
and  Lg  be a vector of the ng actual (often unknown) labels for the  test  set. Let y g  be a  vector of the 
ng label  predictions of the  automated classifier for the  test  set X g .  Furthermore,  let COSt(yg,Lg) reflect 
task-specific relative  costs of false positives versus false negatives. 

The goal is to train a classifier from given examples X A  and labels LA  that minimizes the (expected) 
value for cOSt(yg,Lg), for the  test  set xg. 

2.1 Basics of SVM Classification 
The following constrained  quadratic optimization (QP) problem is commonly used to  train a SVM classifier: 

maximize: 
Cr=1 ai - Ci,j=I aiajLiLjK(xi ,z j )  N 

subject to: 
0 5 ai 5 C+ if Li = +1, 
0 5 ai 5 C- if Li = -1, 

N Ci=1 aiLi = 0, 

using notational simplifications: N = n ~ ,  L = LA, and zi is i-th  example  (row) in X A .  This is consistent 
with  recent  approaches  (e.g. [12]) for imbalanced  sets of negative and positive examples. 

The prediction of the SVM, for any  example 5 (vector of size D), is given by: 

n 

f(z) = s i g n ( x  aiLiK(z,  zi) + b, 
i=l 

where scalar b (bias)  and vector a (of size n) contains the variables determined by the above QP optimization 
problem. For example, the  test predictions y g  are f(z), for each x in X g .  

Scalars Cf and C- are two parameters fixed before performing QP optimizations.  The  ratio @IC- 
represents task-specific knowledge of how much more costly false negatives (eg.  missed events) are  to false 
positives (e.g. false alarms).  Their specific values represents the costs of overfitting noise in the  training 
data.  In our  work, we typically  determine one (say C-)  empirically, using LOOCV over various candidate 
values. For the scope of this  paper, we will focus on the special case of C = C- = C+ and simply refer to a 
single parameter C. 

K(z i ,z j )  represents  a  kernel which implicitly projects two given examples from D dimensional input 
space into some (possibly infinite, typically nonlinear)  feature  space. The simplest is the linear  kernel, 
implemented as a simple dot  product: 

d 

K ( u , w ) ~ u @ w ~ ~ u i . w i .  
i=l 

The polynomial kernel is defined by a non-linearly squashed  dot-product of the following form: 

K(u,v)  = (u @ 21 + T ) d ,  

with  polynomial degree parameter d.  Varying the continuous offset parameter r changes the relative weighting 
of the (implicit) terms  in  the nonlinear polynomial feature  space. 
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One of the most  popular kernels is the radial basis function (RBF) nonlinear kernel: 

with a variance parameter c, which is also based on different non-linear  squashing of the  dot-product between 
two  examples 2 .  

Reasonable  settings for kernel parameters  such as d ,  r and [T above  can  often be determined  using 
either  theoretical  estimates of the generalization  error  (e.g. via Vapnik’s bounds  based  on VC-dimension) or 
empirical  estimation  methods  such  as  LOOCV. 

Support  vectors are  those  training example  vectors for which ai > 0. As can  be seen from the above 
summation used to generate  predictions, a zero ai means that  the i-th  training  example  does  not  contribute 
to  the prediction. In SVM applications  often only 10% or less of the training  examples  become supports. 
Such sparsity is a key property of SVM’s that helps them avoid overfitting noise. A  general  rule of thumb is 
that  the expected  test  error of the SVM is proportional to  the  ratio of the number of support vectors to  the 
number of all training examples. 

3 Types of Alpha Seeding 
We use the  term alpha  seeding to refer to any method which provides initial  estimates of the  alpha (a)  
values for the SVM’s QP optimization problem and  starts  the QP problem using them,  instead of using the 
default of all zero alphas that existing SVM methods use. We will restrict ourselves to  methods which start 
each SVM training with feasible alphas  (i.e. which satisfy the bounds  and  the single equality  constraint), 
although  it is conceivable that infeasible seeds may be useful in  some  contexts for some specific SVM training 
algorithms. 

To  motivate  our work and establish a framework, below we discuss a variety of ways in which the  alpha 
seeding  can be used to improve various aspects of SVM training.  In  Section 4, we will empirically  explore 
some of these in more  detail. 

The methods we have identified fall into two broad classes, which we refer to as sequential and branching. 
Most methods we have identified are sequential and incremental in nature - they involve estimating a series 
of alpha  sets,  with  the seeds for the next SVM training  being  based  on the results of the previous  similar 
SVM training.  In some cases, in  particular  estimating  LOOCV  errors, the flow  of alpha seeds follows a 
branching  tree  structure,  rather  than a chain. 

A  fundamental issue is in how the alphas from a previous training  should  be  adapted  into  appropriate 
seeds for the next  training. As we shall  explore, there  are typically much more effective approaches than 
simply  passing the alphas  unchanged between trainings. 

All the  tasks for which we introduce  alpha seeding methods  can  be solved without  seeding (i.e. just  start 
each  with zero alphas).  Thus,  alpha seeding offers no new theoretical  advance, as, say, a new type of SVM 
kernel might.  Instead,  the goal of alpha seeding is drastically  faster convergence to  the final alpha values for 
the SVM problem(s) of interest. However, it is important  to keep in  mind that resource  allocation is almost 
always a concern  in  practice. For example, if one can  speed the SVM training for one kernel or  C value by a 
factor of 10, one  may be  able to  search for the optimal of ten different types of kernels (or  C values) in the 
same fixed available overall training  time. 

It is  also useful to  keep in mind that all of these  approaches to  alpha seeding can  amortize the cost of 
kernel computations  across the entire  set of  of SVM trainings.  Dot-product caches are common even for 
single SVM trainings,  as  in most  practical SVM trainers (e.g. [5]). Our alpha seeding techniques  exploit 
dot-product caches even further,  with  the  later  trainings often requiring  no  additional kernel computations. 
When  input dimensionality D is large,  these savings can  be very substantial (typically  more than 200% 
versus  no  cache). 

The key issue  determining  whether a given alpha seeding method is effective for a given task is, of course, 
whether the  sum of the  training costs over the sequence of successively seeded SVM’s is lower than  the 
cost of directly training  the non-seeded SVM of interest. We will explore that issue in Section 4, after  first 
discussing the various  methods. 
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3.1 Computing  Actual LOOCV Error 
One of simplest and yet effective alpha seeding methods is for efficient LOOCV  estimation of generalization 
error.  LOOCV  requires N SVM trainings, where the i-th SVM is tested  on  the  i-th example and is trained 
only on the N - 1 other  examples. Unlike other  methods below, each such case is for fixed parameters (e.g. 
for given C,  RBF kernel CT, etc.). Doing multiple  LOOCV’s, for various parameter values, provides  a  popular 
empirical-based  means of model selection. 

SVM theory provides estimates of the worst case bounds on the LOOCV error, such as  the fraction of 
training examples which become support vectors. However, since such  bounds  are necessarily loose, it  can 
be useful for accurate model selection to compute the actual  LOOCV  error, if it  can be  obtained efficiently. 

Our  alpha seeding approach to LOOCV is as follows. First,  train  the SVM for all N examples.  Denote 
the resulting  alphas as p .  For each of the examples ( i )  out of the full N ,  pretend in turn  that  that i-th  one 
is not in the  data  set. If Pi is already 0, then simply classify this  i-th example as the full SVM does (and 
record if it disagrees  with Li). Otherwise]  initialize the N alphas (a)  to be  those of /? and  set ai to  0 (i.e. 
forget it).  In  that case, the equality  constraint aiLi = 0 is violated, by a residual of magnitude pi.  To 
re-establish the equality, we must  distribute that residual to some of the other  alphas.  Finally,  after  training 
the i-th SVM from the so-adjusted  alphas a,  we classify the i-th  example (and record if it disagrees  with Li). 

We have found that a simple and yet rather effective method is to redistribute the residual  among  all the 
in-bound alphas  (i.e.  those  greater  than 0 and less than  C). A key motivation is that modern SVM trainers 
tend  to work on in-bound  alphas before rexamining  at-bound ones. This is because generally once an  alpha 
reaches 0 or  C  it will tend  to  stay  there  during  the remainder of a SVM training. 

We have explored various schemes for redistributing the residual  among the in-bound  alphas.  One which 
routinely  performs well, although  not  the best  in every case, is to uniformly add  an equal  portion of pi to  
each in-bound alpha aj for which its corresponding  example j is in same class as  the hold-out (Le. same 
label Li).  That is, add 5 to  each, where z is the number of other  examples of that class with  in-bound 
alphas. The exception is that if this causes some alpha to  reach (i.e.  want to exceed) the limit C ,  then  any 
remaining  residual is (uniformly)  redistributed  among  the  remaining  in-bound  alphas of that class,  until  all 
residual is gone. We call this scheme uniform same-class  residual  redistribution, and  report  results  with  it 
in Section 4.1. 

N 

3.2 GrowC: Quick Training for Large C 
A more complex alpha seeding method involves training SVM’s using successively larger  C values. It is 
commonly observed  in SVM literature that larger  C values tend to require  substantially  more  training  time 
than smaller values. However, we theorized that initial  training  with  a  smaller  C could quickly identify 
approximate  alpha weights which later  trainings  with  larger C’s would be  able to refine. 

More precisely, let S = [C,, . . . , Cn] where Ci < Ci+l be  a  training schedule that produces  correct alpha 
weights for C,, the  target value of C. We will refer to  the training  phase that uses Ci as Si. The GrowC 
approach  takes the alphas  produced at the end of Si and uses them  as seeds for phase Si+l. 

The  heart of any  such strategy relies on  determining an effective schedule for growing C.  Our goal in this 
work is to establish that good schedules do exist, and we defer an in-depth  investigation into  automatically 
producing them  to  future work. The higher-order optimization  method described in  Section  3.6 for adjusting 
alpha values automatically  as  training progresses could also be used to  choose appropriate  intermediate C 
values. 

Another key issue involves adjustments to  the alphas between training  phases.  When moving from Si to  
& + I ,  the range of allowable alpha values expands from [0 . . . Ci] to [0 . . . Ci+l]. There  are several  options 
available. The alphas from Si can  be passed unchanged to &+I. Alternatively, the Si alphas that  are at 
Ci can  be moved to  Ci+1. A third  alternative is to scale all of the alphas  into  the new range.  Lastly, a 
more complex (possibly adaptive)  method  can  be used to adjust only those  alphas that  are likely to  move 
from their Si values (as in Section 3.6).  In Section 4.2, we compare the results of the first three  options 
empirically and  demonstrate  the  importance of good choices for alpha  adjustment between training phases. 

3For efficiency, we do  not actually destroy the original data set, but instead have  refined our SVM algorithms to allow 
ignoring  one  selected  example during the QP optimization. 
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3.3 Kernel  parameter via LOOCV 
Another  natural use of alpha seeding is for sequential SVM’s over some range of settings for a kernel pa- 
rameter.  Previous work with  Kernel  Adatron SVM trainers [2] showed this  to  be effective, often not costing 
significantly more to  train for a large  number of parameter values than for the first  one. 

Based on  our experience  with this case, its effectiveness seems derive in part from the  fact  that  the kernel 
values often do  not change  substantially  under  smaller  parameter changes. 

3.4 Adding new examples or features 
For completeness, we mention that another promising use of alpha seeding might be for incremental online 
SVM’s, in which the  training  set is extended  with  additional  examples and/or  input  features. For example, 
one  might  imagine a forward feature  subset selection approach  in which at each round the  candidate  feature 
which most  radically  change the alphas so far  in some fixed time limit is selected. However, we have no 
specific empirical  results is this  area  yet. 

3.5 Heuristically guessing  initial  alphas 
Alpha seeds need not  be based on previous trainings of very similar SVM’s. For example,  they could be 
based  on  geometrical  arguments for why a given example is likely to  be  support vector  or not,  or likely to 
be at C (i.e.  a noisy example). Guessing which examples will be  at 0 or C can  be  particularly useful for 
many SVM training  methods, since such  at-bounds cases can  often be ignoring in many  iterations of those 
algorithms. 

A  particular  method  in  this  area which we have explored is training a SVM using a linear kernel and 
then using those  alphas to seed training a SVM for some target nonlinear  kernel. The  intuition is that for 
problems which are only slightly  nonlinear, such seeds can  be very close to optimal for the nonlinear  case 
as well. This  idea is especially appealing given the substantial  time  savings possible for linear kernels, due 
to  the feasibility of folding all N alphas  into only D weights necessary to evalute the SVM output for any 
example  in the linear  case. 

A further  idea along  these lines would be to do standard linear regression (or,  Fisher  discriminate  analysis, 
in the case of classification per se),  and  then  suitably convert the resulting D weights into N alphas  seeds. 
Given that  the complexity of these classic methods is O ( N  . D 3 )  whereas SVM training is roughly O(N2),  
this  idea seems appealing. For example,  one might use it  to seed a  linear SVM. However, the mapping from 
D to  N is one-to-many and  it is not yet clear whether  there are any  promising preferences on that space 
of mappings,  other  than  the SVM bounds  and equality  constraints themselves (whose exact  solution would 
require full SVM training, defeating the point of any  heuristical  seeding). 

3.6 Higher-Order  Optimization 
The popular  practical SVM algorithms  are all gradient-based (e.g. S M O  [SI and SVMlight [5]).  Their 
popularity is in  large part because an explicit N-by-N kernel Hessian could not fit in computer  memory for 
large N greater  than  about 10,000. 

However, based  on  our  examinations of the behaviors of the  alpha values during the course of many SVM 
gradient-based  trainings,  it  appears that quite  often some alphas  change in steady monotonic ways for long 
sequences. For example, we noticed that sometimes within the first 25% of trainings of the MNIST [7] digit 
data,  the relative  ordering of the  alpha values remained constant, with  most  having roughly constant slopes 
of change  across the remaining 75% of the S M O  training  iterations.  Those are exactly the  sorts of cases 
that second-order  information could optimize - allowing them  to more  directly jump  to  their final values. 

These  methods  thus involve periodically checking the  alpha values and  noting how they  are changing. 
This  can  be accomplished by training for successive 10-second (or so) intervals and examining the alphas 
after each interval. 

We do not yet  have  strong  empirical  results  in this  area. Some alphas  can  indeed  be  helped to converge 
quicker using  such a method,  but for large-scale problems of interest the inefficient converge of the  other 
alphas  has  tended  to  dominate  the overall cost in  experiments so far. Nevertheless, we mention this case 
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within the context of our overall framework because it seems to  offer particularly  interesting  opportunities 
for meta-learning (i.e. using machine  learning itself to  learn how to  better optimize). 

3.7 Promoting  Modularity 
Before proceeding to our  empirical  results, we note that  the previous case suggests the general  utility of 
viewing the SVM training process in a more  modular way than  in  current approaches.  One could imagine 
any of the  alpha seeding methods we have proposed being tightly  integrated  within  any specific SVM training 
algorithm. The  temptation  to do so seems especially strong for more complex cases, such as  those using 
second-order  information. However, there  can  be  great value in  separating the overall SVM optimization  task 
into  alpha seeding and  alpha optimization processes, even though where the line is draw  can be somewhat 
arbitrary. 

By  maintaining  such  modularity, one can freely mix a variety of SVM training  algorithms  with a variety 
of seeding heuristics  with  greater  ease.  In  other words, it  can  be useful to view some  incremental changes 
to  alphas values as being inspired by educated guesses (e.g. heuristics) and some by more logical inferences 
(e.g. gradients). 

4 Examples 
To empirically  explore alpha seeding, we modified two common SVM algorithms,  our  implementation of 
S M O  [8] (with  improvements suggested by [6]) and  the freely available SVMlight [5]. Our modifications 
enabled them  to  take seed alphas  as  arguments  and begin training from that point  on,  instead of the default 
of zero alphas. 

For our  initial  experiments to  report in this  paper we selected the UCI Adult data  set, since a fair  amount 
of related work with  this  data  set  has  already been published using the S M O  and SVMlight algorithms.  In 
particular, for direct  comparison we used Platt’s discretized versions, consisting of 123 binary  input  attributes 
and various subsets of the full set of 32562  [8]. 

All tests were run on an 450Mhz Sun  Ultra 60, with 2 Gigabytes of RAM. 

4.1 LOOCV Results 
For LOOCV tests, we used the smallest  subset Platt reported  on  in his work [8], which consists of 1604 
examples. 

Figure 1 shows the cummulative run times for standard SVM (zero  alphas for each of the N LOOCV 
retrainings)  and our uniform same-class residual  redistribution  LOOCV  alpha seeding method  (as  described 
in  Section 3.1). Our  method  performs  nearly  5  times  faster  in  this  test. 

The  training  time for full data set was  2.86 secs and  resulted  in 714 out of 1604 examples  being support 
vectors. The LOOCV training for each of the 714 hold-outs which were support vectors each took roughly 
the amount of time  as  that for full training:  mean 2.943 secs, standard deviation .2923 secs, maximum 4.51 
secs, and minimum 2.24 secs. Using our  alpha seeding, training  times for the  support vector  hold-outs were 
faster:  mean 0.6452 secs, standard deviation .2245, maximum 1.54 secs, and minimum 0.22secs. 

Both  methods, of course,  computed the same LOOCV error  rate  (16.55%), since their  only difference is 
in  speed of convergence. It is interesting to confirm that this  rate is substantially below the (well-known to 
be loose) LOOCV  error  estimate  bounds (44.51%) that  the  standard  ratio of support vectors  divided by the 
number of examples would suggest. 

Figure  2  helps  illustrate why our  method performed so much better  than a standard SVM non-seeded 
method. It plots  all N training times  (sorted from smallest to largest for each method). 714 of the examples 
required  no training (because they were non-support  vectors),  indicated by many zero training  times. An- 
other 301 examples are  treated as non-support vectors for the sake of this figure (i.e.  assigned zero training 
time), because they  had very small alpha values (near zero already). For the remaining 589 examples, there 
is substantially  more  area  under the curve for the zero seeds than for the redistribution-based  seeds.  One 
can see that  this is due to  almost  all zero-seed trainings  requiring roughly same  amount of time.  Whereas 
using our  alpha seeding method, a substantial  number of the  trainings involved times much smaller than 
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the mean. For all  times,  our seeded trainings were sigificantly faster  than  the full N example  initial training 
(which took 2.86 secs). 

1800 1 I I I I I I I 

Figure  1: SMO cummulative training times for LOOCV  on Adult1  data 
Plots  time (y-axis) for each of the N = 1604 LOOCV  trainings (x-axis) after the i-th  example is removed. 
Higher curve is for the  standard SVM (start with  alphas all zero). Lower curve is from using our uniform 
same-class residual  redistribution LOOCV  alpha seeding method,  as  described in Section 3.1. The  total  train 
times  are 1733 secs and 380 secs (i.e.  our seeding is 4.7 faster  than zero seeding). For linear  kernel,  with 
C=1, for UCI  Adult1  data  set. 

4.2 GrowC Results 
For both  our modified S M O  and SVMlight algorithms, we experimented  with  several schedules for gradually 
growing C.  In  general, we observed that  alpha seeding obtained  dramatic reductions  in total  runtime for 
both  algorithms.  The  particular Adult data set we used for these  experiments is referred to  as “Adult  small” 
in [SI, consisting of 11221 training examples. 

We have verified that  the number of bound  and in-bound  alphas we obtain  correspond to  those  reported 
by Platt. All runs used a linear kernel and  runtimes  are averaged over five trials. We also  made use of the 
cache that stores kernel computations, so that  they need not  be  recomputed. This cache persists over each 
training  phase Si (after the first in a sequence of trainings), to  make it  comparable  to  training from scratch 
(where the cache is available throughout  the course of training). 

In  Section 3.2, we outlined  four  options for how to seed Si+l using the  results of Si. We here  report on 
how the first three perform. 
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Figure 2: Sorted S M O  training  times for LOOCV on Adult 1 data 
Top  plot is for standard SVM (zero alphas),  bottom plot is for our  redistribution-based  seeding  method. 

4.3 Direct Alpha Reuse 
Using successively larger values of C and seeding each iteration  with the alphas  found at  the end of the 
previous  one does not always yield runtime benefits, as shown in  Figures 3 and 4. For C values less than 0.3 
for S M O  and for all tested  C values for SVMlight, it is actually more expensive to use this form of alpha 
seeding than  to proceed from scratch. A smaller Ci restricts  what possible alpha values can  be explored, 
thus limiting the initial  runtime,  but when these  alphas  are used as seeds for Si+l with a larger Ci+l, a lot 
of time  can  be  spent  adjusting  them gradually  into the larger  range.  This is especially true for alpha weights 
that  are at Ci at the end of Si - it is likely that they will end  up being at Ci+l at the end of & + I ,  but  it 
may take a long time to push them  that  far. 

4.4 Scaling Bound Alphas 
This observation  leads  naturally to  the second option: at the  end of Si, change all  alphas that have a value 
of Ci (the  “bound”  alphas)  to  the new Ci+l directly. The fact that  an  alpha is bound  in Si often  indicates 
that  it will be  bound  in Si+l. If so, a lot of time  can  be saved by immediately  jumping to  the new boundary 
value, Ci+1. Figure 3 shows that this improves runtime for S M O  over Direct Alpha  Reuse, but  can  still 
(for C less than 0.1) be more expensive than  training from scratch.  Similar  trends  appear for SVMlight in 
Figure 4. 

4.5 Scaling All Alphas 
Our  next  option is to  scale each alpha value produced by Si into  the new range allowed in &+I.  This is 
accomplished by multiplying each alpha value by %. This  has the effect of sending  all  alphas at Ci to 
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-le. scaling  bound alphas 
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Figure 3: S M O  runtime  comparison  on  Adult data 

the new value Ci+l and  spreading  the rest of the in-bound  alphas  into the new range.  In  addition, it keeps 
zero-valued alphas at 0. As shown in Figures 3 and 4, this  strategy achieves the greatest  improvements  in 
runtime.  Training SMO from  scratch for C = 1.0  requires about 175 seconds. Scaling All Alphas  requires 
just  19 seconds, a savings of 89% of the  total  runtime. For SVMlight, training from scratch  requires  120 
seconds, but Scaling All Alphas  requires only 49 seconds (59% savings). 

As noted  above, the choice of schedule S impacts the effectiveness of alpha seeding. The seeding  results  in 
Figures 3 and 4 were all produced using schedule S1 = [0.01,0.05,0.1,0.3,0.5,1.0], which was experimentally 
determined to  work well with the Adult  data. Figures  5 and 6 show the  total  runtime required when using 
various  GrowC  schedules,  including: 

SI = [0.01,0.05,0.1,0.3,0.5,1.0] 
Sz = [0.01,0.1,0.5,1.0] 
s, = [0.01,0.1,1.0] 

We here  observe that more  graduations in the schedule tend  to yield greater overall benefits for S M O ,  
but  the reverse trend  appears for SVMlight. Further  investigation is required to fully understand  what 
strategies for constructing  training sequences are of most use to each algorithm. 

Clearly, intelligent adjustments  to  alphas between training  phases  are  essential. It is possible that  better 
alpha  adjustment  strategies could result  in even larger  runtime  improvements for alpha seeding. In  addition, 
these  results were all gained while using a linear  kernel;  other kernel types may  require different alpha seeding 
(or  C  scheduling)  strategies. 

4.6 Larger C Values 
Our  results  demonstrate significant improvements  in  performance for S M O  for C values less than or  equal 
to  1.0. Most of those  C values are accompanied by a similiar improvement for SVMlight. However, it is not 
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Figure 4: SVMlight runtime  comparison  on  Adult data 

usually possible to predict  ahead of time  what a  good  C value  will be for a  problem.  Therefore, it is often 
observed that good  performance over a variety of C values is important.  In  particular,  large C values have 
been a challenge for SVM algorithms.  In  separate  experiments, we were able to  train  on  the  Adult  data  with 
a C of 500 in  under 85  seconds4. It took SVMlight and S M O  over 10  minutes to  train with  such a large  C.5 
Clearly, alpha seeding  reduces  these previously computationally-expensive  trainings to  reasonable  durations. 

The second  benefit of using a seeding  approach is that  it can significantly reduce the  time required to 
find a good value for C  on  a new data set.  Instead of performing a series of trainings,  all  from  scratch,  with 
various values of C,  it is instead possible to  obtain  results for all values of C by using a training sequence 
that contains  each C value of interest.  The  alpha values are  produced for each intermediate Ci and  can  be 
used to  compute some test  set accuracy  obtained when  using that value for C. 

5 Conclusions 
Our  results  suggest that  alpha seeding is a feasible and promising way for speeding  up SVM training. 
Although  our  speedups  are  often  essentially  constant  ones,  these  factors  are  often much larger than  the 
impact of other recently  published  methods for speeding up SVM's (e.g.  bias  intervals in [6] and "shrinking" 
in [5]). So they  are of significant practical  importance. 

There  are  many  directions for future work. One is to  understand  the  nature of the best  alpha seedings 
better,  toward  speedups  that  are typically  more than nearly-constant ones (ideally,  with  amortized  linear 
time cost  for  each SVM training).  Another is to  understand sensitivity  issues,  such as how close to  the final 
alpha values do  the seeds have to  be, for significant speedup  gains to be  realized. Yet another is to  develop 
means for automatically  finding  good  growth schedules for any given task, for our GrowC method. 

4The training sequence  used  was [0.01,0.05,0.1,0.3,0.5,1.0,3.0,5.0,10,15,20,30,50,100,500]. 
5We terminated the training for each  one at  that point. 
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Figure 5: S M O  runtime comparison on  Adult data for different sequences 

We also  plan to  contrast  our efficient LOOCV alpha seeding approach over various C values against Leave- 
One-Out SVM’s (LOOSVM’s, [13]). Empirical  results concerning the computational  costs of LOOSVM’s 
have  not  yet  been  published, so it is not clear which will be more effective - explicit  search over specific C 
values as in our  case  versus folding the search for C  within the optimization  problem (as  in  LOOSVM’s). 
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